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 This report consists of two parts. The first summarizes work done under supervision of 
Dr. Schweickert. The second (beginning after p. 6 of the first part) summarizes work done under 
supervision of Dr. Dzhafarov 
 

Causal networks with selectively influenced components 
 

Report on the part under Richard Schweickert’s supervision 
 
 
 Considerable evidence indicates that the mental processes involved in performing some 
tasks, such as recall of items from a list, are arranged in a processing tree (Batchelder & Riefer, 
1999).  In such a tree, each process is represented by a vertex and each possible outcome of a 
process is represented by an arc descending from the vertex representing it.  Many causal 
networks can be represented as processing trees (Schweickert & Chen, July, 2008).  Responses 
are represented by terminal vertices that have no descendents.  Processing trees are usually used 
to model the probabilities of the various possible responses.  Typically an investigator proposes 
such a tree, estimates parameters, and tests it through goodness of fit.  A portion of the work on 
the grant is on developing further another approach, Tree Inference (Schweickert & Chen, 2008).  
With Tree Inference, a processing tree is not proposed ahead of time.  Instead, the investigator 
manipulates experimental factors, such as the number of items to be recalled and the delay 
between presentation and recall.  A factor is said to selectively influence a vertex if it changes 
parameters associated with the descendents of that vertex and no other.  If a factor selectively 
influences a vertex we also say it selectively influences the process represented by that vertex.  
In an experiment with two factors, the investigator can test whether each factor selectively 
influences a different vertex.  If so, the form of a processing tree accounting for the data can 
determined.   
 
 Prior to the work on the grant, processing trees were not used for modeling reaction time, 
and there were three limitations to Tree Inference.  1)  It was applicable to experiments with only 
two possible responses (e.g., correct or wrong).  2) Parameters associated with the arcs of a 
processing tree were probabilities bounded above by 1.  3)  An experimental factor was required 
to have an effect at only one vertex.  These three limitations have now been overcome 
(Schweickert & Xi, 2011).  Now, for example, rates of responding can be analyzed in addition to 
probabilities of responses.     
 
 A pair of vertices can be related in one of two ways in a processing tree.  There may be a 
path from the root to a terminal vertex that passes through both vertices.  In that case the vertices 
are said to be ordered.  If there is no such path, the vertices are said to be unordered.  Qualitative 
tests have been developed, through work on the grant, that allow an investigator to test whether 
two experimental factors selectively influence two ordered vertices, and if so, determine their 
order.  Processing trees were found to account well for data in the literature on immediate 
ordered recall and on effects of sleep and retroactive interference (Schweickert, Fisher & Sung, 
in press).  
 
 Processing trees were originally developed for analyzing response probabilities, not 
response times.  Through recent work on the grant, processing trees can now be inferred from a 
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joint analysis of response time and accuracy.  New theorems provide necessary and sufficient 
conditions for reaction time data to be generated from an experiment in which two factors 
selectively influence two different processes.    
 
 Although processing trees describe well the organization of mental processes for some 
tasks, there is no reason to expect processes to be organized in the same way for all tasks.  In 
some tasks, there is evidence that the processes are organized in a directed acyclic network (a 
critical path network).   In earlier work (Schweickert, 1978), a method was developed for 
analyzing reaction times to test whether two experimental factors selectively influence two 
different processes in a directed acyclic network.  If the test was passed, part of the network 
could be inferred from the data.  In particular, an investigator could determine whether the two 
selectively influenced processes are sequential (ordered in the network) or concurrent 
(unordered).   
 
 Ordinarily for a given data set, if one directed acyclic network can account for the data, 
then several different networks can account for the data as well.  There are two ways to 
determine the form of a directed acyclic network that accounts for the reaction time data when 
factors selectively influence processes in the network.  One way is quantitative, through analysis 
of the slacks in the network (Schweickert, 1978).  Another way is qualitative, through analysis of 
which pairs of processes are sequential and which are concurrent, using the Transitive 
Orientation Algorithm (e.g., Golumbic, 1980).  Each method  generates a set of possible 
networks that can account for the data, so the question arises of whether the set of possible 
networks generated by one method is more restricted than the set generated by the other.  Work 
on the grant that shows that these sets are the same when a serial-parallel network accounts for 
the data.  In other words, the uniqueness of directed acyclic networks inferred from the effects on 
reaction time of factors selectively influencing processes has now been characterized for serial-
parallel networks.  A case remains to be characterized, that of networks containing a subnetwork 
in the form of a Wheatstone bridge.    
 
 One of the products of the grant is a book, planned for appearance in early 2012, on 
inferring cognitive architecture by selectively influencing mental processes.   
 
 A manuscript related to the grant is now under review (Schweickert, Fortin, Xi & Viau-
Quesnel).  Because the data are not publically available, they are summarized in the Appendix.   
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Appendix 
 
Manuscript of Schweickert, Fortin, Xi & Viau-Quesnel (Submitted): Method and Results in Brief  
 
 Method.  In the experiment summarized here, the participant began by memorizing two 
memory sets, a set of words and a set of consonants. One memory set was presented again at the 
start of each trial.  Items in this memory set were said to be from the active pool.   
 
 In the Reaction Time Condition, on each trial, a probe was presented and the participant's 
task was to press a button to indicate whether the probe was present in one of the memory sets or 
not.  Two factors were varied from trial to trial: the presence or absence of the probe in the 
memory set and whether the probe was from the active memory pool or the inactive memory 
pool. A third factor was varied between blocks of trials, whether the active and inactive memory 
set contained three and six items, respectively, or contained six and three items, respectively.  
Reaction time and accuracy were measured. 
 
 In the Time Production Condition, the procedure was the same, except as follows.  Prior 
to the memory search trials, participants were trained to produce a time interval of 2.4 seconds.  
On the later memory search trials, the participant was instructed to respond when he or she 
judged that a 2.4 second interval had elapsed since presentation of the probe. 
 
 Results.  There were two main results.  First, in the Reaction Time Condition, reaction 
times increased when the inactive memory set was searched and increased when the set size was 
larger.  The combined effect of these two factors was additive.  The probability of a correct 
response decreased  when the inactive memory set was searched and decreased when the set size 
was larger.  The combined effect of these two factors was multiplicative.  A simple processing 
tree accounts for the data well, in which activation of the memory set is followed by searching 
the memory set.  The durations of the processes add and the probabilities that the processes are 
correct multiply.   
 
 The second main result is in the Time Production Condition.  Time intervals produced by 
the participants were longer when the size of the memory set to be searched was larger.  The 
memory search interfered with timing.  However, the time intervals produced were not longer 
when the memory set was inactive.  Activating the memory set did not interfere with timing.  
Timing and activating a memory set do not compete for capacity, but timing and search do.   
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Table from Schweickert, Fortin, Xi & Viau-Quesnel (Submitted)   
 

Mean Reaction Times, Time Productions and Percent Errors 

__________________________________________________________ 

   Reaction Time Condition 

__________________________________________________________ 

     Memory Set 

  _______________________________________________ 

  Active  Active  Inactive Inactive 
Probe  Size 3  Size 6  Size 3  Size 6 
___________________________________________________________ 

Present   830 (3.5)   933 (6.2)  921 (10.7)  1003 (12.6) 

Absent   880 (1.1)   969 (2.8)  928   (3.7)  1016   (7.0) 

____________________________________________________________ 

   Time Production Condition 

____________________________________________________________ 

     Memory Set 

  _______________________________________________ 

  Active  Active  Inactive Inactive 
Probe  Size 3  Size 6  Size 3  Size 6 
____________________________________________________________ 

Present  3419 (3.6) 3530 (8.0) 3530 (13.9) 3463 (13.7) 

Absent  3418 (1.8) 3548 (4.4) 3530  (7.0) 3469 (10.9) 

____________________________________________________________ 

Note:  Times in msec, percent errors in parentheses.   

 



Causal networks with selectively influenced components

Report on the part under Ehtibar Dzhafarov’s supervision

1 Introduction

1.1 The problem and its applications

This part of the project was aimed at further developing the theory of selective probabilistic causal-
ity. The theory answers the question: Given a set of inputs into a system (e.g., independent variables
characterizing stimuli in a psychological experiment) and a set of stochastically non-independent
random outputs (e.g., random variables describing different aspects of human responses), how can
one determine, for each of the outputs, which of the inputs it is influenced by?

The theory has applications in behavioral and social sciences, including such problems as: in the
investigations of networks of mental operations, does a certain experimental manipulation selectively
influence only a certain component of the network? in conjoint testing, does study time or specific
training for one of the tests selectively influence one’s performance in this test only? in studying
perceptual judgments, is an assessment of a given stimulus property selectively influenced by this
property alone? in medical research, does the presence or absence of a given symptom selectively
depend on a given illness?

The theory also has applications in quantum mechanics, in answering such questions as: can
a model with local non-contextual variables account for the distribution of spins in a system of
entangled particles? The non-commuting measurements of spins along different axes performed on
a given particle correspond to the mutually exclusive values of an experimental manipulation in
behavioral applications.

Other applications of the theory can be deduced from the fact that it generalizes all conceivable
combinations of nonlinear factor and regression analyses, with no constraints imposed on the rela-
tionship between explanatory and response variables, or on the unobservable sources of randomness.

This part of the project involved as a senior personnel Janne Kujala of University of Jyväskylä,
Finland.

1.2 Notation and basic definitions

The problem can be illustrated on the following diagram of selective influences, shown in two
equivalent forms:

↵

✏✏ ((

�

✏✏~~

�

✏✏✏✏

�

��
tt

A1 A2 A3

⌘

↵1
= {↵,�, �}

✏✏

↵2
= {�}

✏✏

↵3
= {↵, �, �}

✏✏
A1 A2 A3

7



A1
, A2

, and A3 here are random outputs, ↵,�, �, and � are inputs (also referred to as external

factors), and arrows indicate the relation “influences.” The right-hand diagram is in the canonical

form, with the factors redefined so that each random output Ai is influenced by a single factor,
↵i. Factors are treated as deterministic quantities, i.e., even if they are random variables, the joint
distribution of the outputs is always conditioned on their specific values (or levels). Each factor
can be on one of several levels, and the joint distribution of

�
A1, A2, A3

�
is supposed to be known

for each allowable combination of factor levels (treatment). Thus, if factors ↵,�, �, � are all binary,
then each of the 2⇥ 2⇥ 2⇥ 2 = 16 logically possible combinations is a potential treatment, but the
joint distribution of

�
A1, A2, A3

�
may only be considered for some of them (e.g., treatments that

have not been used in the experiment or are physically impossible are not allowable). This is an
important consideration if one wishes to conveniently deal with the canonical diagrams of selective
influences only. In our example, ↵1,↵2,↵3 have 8,2, and 8 levels, respectively, but the number of
allowable treatments cannot exceed 16 < 8⇥ 2⇥ 8.

The general theory and the pseudo-quasi-metric tests discussed in Section 2.2 have been devel-
oped for arbitrary sets of factors and outputs, but to keep notation simple this report is confined to
finite sets only. Also, for simplicity only, the random outputs are assumed to be random variables
in the narrow sense (corresponding to the conventional Lebesgue measure or countable measure);
they may be arbitrary in the general theory.

Let ⇤
i

be the set of possible levels of factor ↵i (i = 1, . . . , n) in a canonical diagram of selective
influences

↵1

✏✏

. . . ↵i

✏✏

. . . ↵n

✏✏
A1 . . . Ai . . . An

Let � ⇢ ⇤1 ⇥ . . . ⇥ ⇤

n

be the set of allowable treatments, and let for every treatment � 2 � the
joint distribution of

�
A1, . . . , An

�
be given. The first question is:

If at least for some of the treatments � the random outputs are not stochastically
independent, what is the meaning of saying that A1 is selectively (exclusively) influenced
by ↵1, A2 by ↵2, etc.?

And assuming that a reasonable definition of selective influences is achieved (which means a defi-
nition satisfying certain desiderata, listed below, and lending itself to fruitful mathematical devel-
opment), the second question is:

How can one determine, based on the joint distributions of
⇣
A1

�

, . . . , An

�

⌘
for each � 2 �,

whether the canonical diagram of selective influences is satisfied?

The reasonable definition in question can be given in one of two equivalent forms:

(SI1) there are independent random entities C, S1, . . . , Sn and functions Ri

�
↵i, C, Si

�
(i = 1, . . . , n)

such that �
R1

�
j1, C, S

1
�
, . . . , R

n

�
j
n

, C, S1
��

⇠
�
A1

�

, . . . , An

�

�

for any � = (j1, . . . , jn) 2 � (⇠ meaning “identically distributed”);
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(SI2) there is a random entity C and functions Ri

�
↵i, C

�
(i = 1, . . . , n) such that

�
R1

(j1, C) , . . . , Rn

(j
n

, C)

�
⇠

�
A1

�

, . . . , An

�

�

for any � = (j1, . . . , jn) 2 �.

In quantum physics (see Section 2.4) these formulations correspond to the classical explanations of
the entanglement phenomena with, respectively, stochastic and deterministic hidden variables.

The fact that either of these definitions (SI1 or SI2) is satisfied is schematically indicated as�
A1, . . . , An

�
" (↵1, . . . ,↵n

).

2 Progress

2.1 Joint Distribution Criterion

Definitions SI1 and SI2 were shown to be equivalent to the following proposition, called the Joint

Distribution Criterion:

(JDC) there is a jointly distributed vector of random variables

H =

�
H1

1 , . . . , H
1
k1
, . . . , Hi

1, . . . , H
i

ki
, . . . , Hn

1 , . . . , H
n

kn

�

such that �
H1

j1
, . . . , Hn

jn

�
⇠

�
A1

�

, . . . , An

�

�

for any � = (j1, . . . , jn) 2 �.

H is called the JDC-vector. This criterion has a greater heuristic power than definitions SI1 and
SI2. Some of the immediate consequences of JDC are as follows:

1. for any subset {i1, . . . , ik} of {1, . . . , n},
�
Ai1 , . . . , Aik

�
does not depend on factors outside�

↵i1 , . . . ,↵ik
�

(complete marginal selectivity);

2. for any subset {i1, . . . , ik} of {1, . . . , n} we have
�
Ai1 , . . . , Aik

�
"

�
↵i1 , . . . ,↵ik

�
(nestedness);

3. for any measurable functions F1

�
↵1, a1

�
, . . . , F

n

(↵n, an) we have
�
F1

�
↵1, A1

�
, . . . , F

n

(↵n, An

)

�
"

�
↵1, . . . ,↵n

�

(invariance with respect to factor-level-specific transformations of random outputs);

4. if
�
A1, . . . , An

�
are random variables in the narrow sense, then C in SI2 or C, S1, . . . , Sn

in SI1 can always be chosen to be random variables in the narrow sense. Moreover, they
can be chosen arbitrarily as any continuously (atomlessly) distributed random variables, e.g.,
uniformly distributed between 0 and 1.
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2.2 Distance-like functions

Let X = {X
!

: ! 2 ⌦} be an indexed set of jointly distributed random variables X
!

with dis-
tributions (V

!

,⌃
!

, µ
!

). For any ↵,� 2 ⌦, the ordered pair (X
↵

, X
�

) is a random variable with
distribution (V

↵

⇥ V
�

,⌃
↵

⇥ ⌃

�

, µ
↵,�

), and X ⇥ X is a set of jointly distributed random variables
(hence also a random variable).

We call a function d : X⇥X ! R a pseudo-quasi-metric (p.q.-metric) on X if, for all ↵,�, � 2 ⌦,
(i) d (X

↵

, X
�

) only depends on the joint distribution of (X
↵

, X
�

),
(ii) d (X

↵

, X
�

) � 0,
(iii) d (X

↵

, X
↵

) = 0,
(iv) d (X

↵

, X
�

)  d (X
↵

, X
�

) + d (X
�

, X
�

).
Conventional pseudometrics (also called semimetrics) obtain by adding the property d (X

↵

, X
�

) =

d (X
�

, X
↵

); conventional quasimetrics are obtained by adding the property ↵ 6= � ) d (X
↵

, X
�

) >
0. A conventional metric is both a pseudometric and a quasimetric.

The relevance of the p.q.-metrics on the sets of jointly distributed random variables to the
problem of selectivity lies in the general test (necessary condition) for selectivity of influences,
formulated after the following definition.

We call a sequence of input points (j1, . . . , jl) (where j
i

2 ⇤

i

for i = 1, . . . , l � 3) treatment-

realizable if there are treatments �1, . . . ,�l 2 � (not necessarily pairwise distinct), such that

(j1, jl) ⇢ �1 and (j
i�1, ji) ⇢ �i for i = 2, . . . , l.

Now, if a JDC-vector H exists, then for any p.q.-metric d on H we should have

d
�
H1

j1
, H l

jl

�
= d

�
A1

�

1 , Al

�

1

�

and
d
⇣
Hi�1

ji�1
, Hi

ji

⌘
= d

⇣
Ai�1

�

i , Ai

�

i

⌘

for i = 2, . . . , l whence

d
�
A1

�

1 , Al

�

1

�


lX

i=2

d
⇣
Ai�1

�

i , Ai

�

i

⌘
. (1)

This chain inequality, written entirely in terms of observable probabilities, is referred to as a p.q.-

metric test for selectivity of influences. If this inequality is violated for at least one treatment-
realizable sequence of input points, no JDC-vector H exists, and the selectivity is ruled out.

It turns out that one only needs to check the chain inequality for a special subset of all possible
treatment-realizable sequences j1, . . . , jl. Namely, a treatment-realizable sequence j1, . . . , jl is called
irreducible if j1 6= j

l

and the only subsequences {j
i1 , . . . , jik} with k > 1 that are subsets of

treatments are pairs {j1, jl} and {j
i�1, ji}, for i = 2, . . . , l. Otherwise the sequence is reducible. It

was proved that

given a p.q.-metric d on the hypothetical JDC-vector H, inequality (1) is satisfied for
all treatment-realizable sequences if and only if this inequality holds for all irreducible
sequences.

As a special case,
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if � = ⇤1 ⇥ . . . ⇥ ⇤

n

(a completely crossed factorial design), then inequality (1) is
satisfied for all treatment-realizable sequences if and only if this inequality holds for all
tetradic sequences of the form x, y, s, t, with x, s 2 {↵} ⇥ ⇤

i

, y, t 2 ⇤

j

, x 6= s, y 6= t,
i 6= j.

A very versatile and useful class of p.q.-metrics is formed by order-distances. Given an indexed set
of jointly distributed random variables X = {X

!

: ! 2 ⌦}, let

R ⇢
[

(↵,�)2⌦⇥⌦

V
↵

⇥ V
�

,

where V
!

denotes the set of possible values of X
!

. We write a � b to designate (a, b) 2 R.
Let R be a total order, that is, transitive, reflexive, and connected in the sense that for any
(a, b) 2

S
(↵,�)2⌦⇥⌦ V

↵

⇥ V
�

, at least one of the relations a � b and b � a holds. We define the
equivalence a ⇠ b and strict order a � b induced by � in the usual way. Finally, we assume that
for any (↵,�) 2 ⌦⇥ ⌦, the sets

{(a, b) : a 2 V
↵

, b 2 V
�

, a � b}

are µ
↵,�

-measurable, where µ
↵,�

is the probability measure for (X
↵

, X
�

). This implies the µ
↵,�

-measurability
of the sets

{(a, b) : a 2 V
↵

, b 2 V
�

, a � b} , {(a, b) : a 2 V
↵

, b 2 V
�

, a ⇠ b} .
The function

D(X
↵

, X
�

) = Pr [X
↵

� X
�

]

is called an order p.q.-metric, or order-distance, on X. It was proved that D satisfies the properties
(i)-(iv) of the definition of a p.q.-metric.

As an example of an order-distance applied to the selectivity problem, let ⇤1 = [0, 1], ⇤2 = [0, 1],
� = ⇤1 ⇥⇤2. Let A1

�

, A2
�

for any treatment � = (w1, w2) have a bivariate normal distribution with
zero means, unit variances, and correlation ⇢ = min (1, w1 + w2). Marginal selectivity is trivially
satisfied. For any bivariate normally distributed (A,B), let us define A � B iff A < 0, B � 0. Then
the corresponding order-distance on the hypothetical JDC-set H is

D

�
H1

w1
, H2

w2

�
=

arccos (min (1, w1 + w2))

2⇡
.

The sequence of input points (1, 0) , (2, 1) , (1, 1) , (2, 0) is treatment-realizable, so if H exists, we
should have

D

�
H1

0 , H
2
0

�
 D

�
H1

0 , H
2
1

�
+D

�
H2

1 , H
1
1

�
+D

�
H1

1 , H
2
0

�
.

The numerical substitutions yield, however,

1

4

 0 + 0 + 0,

and as this is false, the hypothesis of selectively is rejected.
This example generalizes into a special class of order-distances, classification distances, defined

by the following construction of �: provided the sigma-algebra ⌃

!

associated with each V
!

contains
at least n > 1 disjoint nonempty sets, one can partition each V

!

as
S

n

k=1 V
(k)
!

, with V
(k)
!

2 ⌃

!

, and
put a � b if and only if a 2 V

(k)
↵

, b 2 V
(l)
�

and k  l. Another application of classification distances
will be given in Section 2.4.
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2.3 Linear Feasibility Test

Let now each random variable Ai have a finite set of m
i

possible values (enumerated for simplicity
1, . . . ,m

i

), and let each factor/input ↵i contain k
i

factor levels (enumerated 1, . . . , k
i

). This is ar-
guably the most important special case both because it is ubiquitous and because in all other cases
random variables and factors can be discretized into finite number of categories. The Linear Feasibil-

ity Test (LFT) to be described is a direct application of JDC to this situation, furnishing a necessary
and sufficient condition for the diagram of selective influences

�
A1, . . . , An

�
" (↵1, . . . ,↵n

).
The distributions of

⇣
A1

�

, . . . , An

�

⌘
are represented by probabilities

Pr

⇥
A1

�

= a1, . . . , A
n

�

= a
n

⇤
,

for all � = (j1, . . . , jn) 2 � and all (a1, . . . , an) 2 {1, . . . ,m1} ⇥ . . . ⇥ {1, . . . ,m
n

} . We consider
this probability the [(a1, . . . , an) , (j1, . . . , jn)]th component of the m1 . . .mn

t-vector P of all such
probabilities (with t denoting the number of treatments in �). The joint distribution of H in JDC,
if it exists, is represented by probabilities

Pr

⇥
H1

1 = h1
1 . . . , H

1
k1

= h1
k1
, . . . , Hn

1 = hn

1 , . . . , H
n

kn
= hn

kn

⇤
,

with �
h1
1, . . . , h

1
k1
, . . . , hn

1 , . . . , h
n

kn

�
2 {1, . . . ,m1}k1 ⇥ . . .⇥ {1, . . . ,m

n

}kn .

We consider this probability the
�
h1
1, . . . , h

1
k1
, . . . , hn

1 , . . . , h
n

kn

�
th component of the (m1)

k1 . . . (m
n

)

kn -
vector Q of all such hypothetical probabilities.

Consider now the Boolean matrix M with rows corresponding to components of P and columns
to components of Q: let M (r, c) = 1 if and only if row r corresponds to the [(j1, . . . , jn) , (a1, . . . , an)]th
component of P , column c to the

�
h1
1, . . . , h

1
k1
, . . . , hn

1 , . . . , h
n

kn

�
th component of Q, and

h1
j1

= a1, . . . , h
n

jn
= a

n

.

Clearly, the vector Q exists if and only if the system

MQ = P, Q � 0 (2)

has a solution (is feasible). This is a linear programming task in the standard form (with a constant
objective function). Let L (P ) be a Boolean function equal to 1 if and only if this system is
feasible. L (P ) is known in linear programming to always be computable, its time complexity being
polynomial. It is therefore justifiable to call JDC a general solution for the problem of rejecting or
confirming a diagram of selective influences in all cases involving only finite sets of values/levels.

The linear system (2) is feasible if and only if the point P belongs to the convex hull of the
points corresponding to the columns of M , which form a subset of the vertices of a unit hypercube.
In particular, if the set � of allowable treatments contains all combinations of factors points, the
polytope is the ((k1 (m1 � 1) + 1) . . . (k

n

(m
n

� 1) + 1)� 1) -dimensional convex hull of the points
corresponding to the columns of the Boolean matrix M , which form a subset of the vertices of the
(m1)

k1 . . . (m
n

)

kn -dimensional unit hypercube.
As an example, let there be factors ↵ = {1, 2}, � = {1, 2}, and let the set of allowable treatments

� consist of all four possible combinations of the factor points. Let A and B be binary variables,
a1 = b1 = 1, a2 = b2 = 2, distributed as shown:
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↵ � A B Pr

1 1 1 1 .140
1 2 .360
2 1 .360
2 2 .140

↵ � A B Pr

1 2 1 1 .198
1 2 .302
2 1 .302
2 2 .198

↵ � A B Pr

2 1 1 1 .189
1 2 .311
2 1 .311
2 2 .189

↵ � A B Pr

2 2 1 1 .460
1 2 .040
2 1 .040
2 2 .460

Marginal selectivity here is satisfied trivially: all marginal probabilities are equal 0.5, for all treat-
ments. In the matrix form of the LFT, the column-vector of the above 16 probabilities,

(.140, .360, .360, . . . , .040, .040, .460)>,

using > for transposition, is denoted by P . The LFT problem is defined by the system MQ=P,
Q � 0, where the 16⇥16 Boolean matrix M is shown below: each column of the matrix corresponds
to a combination of values for the hypothetical H-variables (shown above the matrix), while each
row corresponds to a combination of a treatment with values of the outputs A,B (shown on the
left).

H1↵ 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
H2↵ 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
H1� 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
H2� 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

↵ � A B
1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 2 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

2 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
1 2 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 2 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

2 2 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
2 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 2 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

2 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

2 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
2 2 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 2 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

2 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

2 2 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

The linear programing routine of MathematicaTM(using the interior point algorithm) shows that
here the linear system (2) has solutions corresponding to the JDC-vector
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H1↵ H2↵ H1� H2� Pr

1 1 1 1 .02708610
1 1 1 2 .00239295
1 1 2 1 .16689300
1 1 2 2 .03358610
1 2 1 1 .00197965
1 2 1 2 .10854100
1 2 2 1 .00204128
1 2 2 2 .15748000

H1↵ H2↵ H1� H2� Pr

2 1 1 1 .15748000
2 1 1 2 .00204128
2 1 2 1 .10854100
2 1 2 2 .00197965
2 2 1 1 .03358610
2 2 1 2 .16689300
2 2 2 1 .00239295
2 2 2 2 .02708610

The column-vector of these probabilities constitutes Q > 0. This proves that in this case we do
have (A,B) " (↵,�).

Let us now change the distributions of (A,B) to the following:

↵ � A B Pr

1 1 1 1 .450
1 2 .050
2 1 .050
2 2 .450

↵ � A B Pr

1 2 1 1 .105
1 2 .395
2 1 .395
2 2 .105

↵ � A B Pr

2 1 1 1 .170
1 2 .330
2 1 .330
2 2 .170

↵ � A B Pr

2 2 1 1 .110
1 2 .390
2 1 .390
2 2 .110

Once again, marginal selectivity is satisfied trivially, as all marginal probabilities are 0.5, for all
treatments. The linear programing routine of MathematicaTM, however, shows that the linear
system (2) has no solutions here. This excludes the existence of a JDC-vector for this situations,
ruling out thereby the possibility of (A,B) " (↵,�).

2.4 Paralells with Quantum Physics

Both the Linear Feasibility Test and the Joint Distribution Criterion on which it is based have
their analogues in quantum physics. To appreciate the analogy, however, one has to adopt the
interpretation of noncommuting quantum measurements performed on a given component of a
quantum-entangled system as mutually exclusive factor levels of the same factor.

In the Einstein-Podolsky-Rosen (EPR) paradigm, several subatomic particles are emitted from
a common source in such a way that they remain entangled (have highly correlated properties,
such as momenta or spins) as they run away from each other. An experiment may consist, e.g., in
measuring the spin of electron 1 along one of several axes, ↵1

= ↵1
1, ↵1

= ↵1
2, etc., and (in another

location but simultaneously in some frame of reference) measuring the spin of electron 2 along one of
several axes, ↵2

= ↵2
1, ↵2

= ↵2
2 , etc., and in the same manner for other particles. The outcome Ai

of a measurement along any axis on particle i = 1, . . . , n is a random variable with several possible
values, depending on the spin number of the particles (for electrons, there are two possible values,
“up” or “down”). The question that arises is: does measurement ↵i selectively affect only Ai (even
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though A1, . . . , An are not independent)? If the answer is negative, then the measurement of one
electron affects the outcome of the measurement of another electron even though no information
can be exchanged between two distant events that are simultaneous in some frame of reference.
What makes this situation formally identical to the selective influence problems considered above
is that the measurements along two different axes, say, ↵i

1 and ↵i

2, are non-commuting, i.e., they
cannot be performed on the ith particle simultaneously. This makes it possible to consider them
as levels of factor ↵i.

Below is the table of correspondences between the general language of selective probabilsitic
causality and the quantum-mechanical notions used in the analysis of spins of entangled particles:

Selective Probabilistic Causality (general) Quantum Entanglement Problem (for spins)

observed random output detected spin value of a given particle

factor/input spin measurement in a given particle

factor level setting (axis) of the spin measurement

joint distribution criterion joint distribution criterion

canonical diagram of selective influences “classical” explanation (by context-independent local variables)

representation in the form SI1 probabilistic “classical” explanation

representation in the form SI2 deterministic “classical” explanation

The results of the simplest entanglement experiment, with n = 2,k1 = k2 = 2, m1 = m2 = 2,
are described by the estimates of 16 probabilities

p
�
A1, A2|↵1,↵2

�
= Pr


A1

=

⇢
up

down
,A2

=

⇢
up

down

���� ↵
1
=

⇢
↵1
1

↵1
2

,↵2
=

⇢
↵2
1

↵2
2

�
,

with nothing preventing one, of course, from encoding both ↵1
1 and ↵2

1 by 1 and ↵1
2 and ↵2

2 by 2.
Encoding “down” and “up” spins for A by • and �, and for B by t and u, we get

� = (1, 1) B11 = t B11 = u
A11 = • p11 p12 a1·
A11 = � p21 p22 a2·

b·1 b·2

� = (2, 1) B21 = t B21 = u
A21 = • r11 r12 a01·
A21 = � r21 r22 a02·

b·1 b·2

� = (1, 2) B12 = t B12 = u
A12 = • q11 q12 a1·
A12 = � q21 q22 a2·

b0·1 b0·2

� = (2, 2) B22 = t B22 = u
A22 = • s11 s12 a01·
A22 = � s21 s22 a02·

b0·1 b0·2

It is known since Arthur Fine’s work (J. Math. Phys. 23, 1306-1310, 1982) that the existence
of the JDC-vector for this situation (interpreted as the existence of a classical explanation for it) is
equivalent to the probabilities satisfying the following inequalities:

�1  p11 + r11 + s11 � q11 � a01· � b·1  0,
�1  q11 + s11 + r11 � p11 � a01· � b0·1  0,
�1  r11 + p11 + q11 � s11 � a1· � b·1  0,
�1  s11 + q11 + p11 � r11 � a1· � b0·1  0.

(3)
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By applying the LFT to the matrices above, these inequalities are shown to be solutions for (2),
with

P = (p11, p12, . . . , s21, s22)
>

and M the same 16⇥16 Boolean matrix as in Section 2.3. In fact, using a standard facet enumeration
program (e.g., lrs program at http://cgm.cs.mcgill.ca/~avis/C/lrs.html) these inequalities (together
with the equalities representing marginal selectivity) can be derived from (2) “mechanically.”

The same mechanical derivation can be used for larger entanglement problems. Once such a
system of inequalities S is derived, one can use it to prove necessity (or sufficiency) of any other
system S0 by showing, with the aid of a linear programming algorithm, that S0 is redundant
when added to S (respectively, S is redundant when added to S0). But given a set of numerical
(experimentally estimated or theoretical) probabilities, computing L (P ) is always preferable to
dealing with explicit inequalities as their number becomes very large even for moderate-size vectors
P . While the set of inequalities (for n = 2, k1 = k2 = 2, m1 = m2 = 2), assuming that the marginal
selectivity equalities hold, number just 8, already for n = 2, k1 = k2 = 2 with m1 = m2 = 3

(describing, e.g., an EPR experiment with two spin-1 particles, or two spin-1/2 ones and inefficient
detectors), our computations yield 1080 inequalities equivalent to L (P ) = 1, and for n = 3,
k1 = k2 = k3 = 2 and m1 = m2 = m3 = 2, corresponding to the Greenberger-Horne-Zeilinger
paradigm with three spin-1/2 particles, this number is 53792.

The inequalities in (3) can also be derived using the classification distances discussed in Section
2.2. Consider the chain inequalities for the order-distance D1 obtained by putting • = t = 1,
� = u = 2, and identifying � with :

q12 = D1(H
1
x

,H2
y

0)  D1(H
1
x

,H2
y

)+D1(H
2
y

,H1
x

0)+D1(H
1
x

0,H2
y

0) = p12+r21+s12,

p12 = D1(H
1
x

,H2
y

)  D1(H
1
x

,H2
y

0)+D1(H
2
y

0,H1
x

0)+D1(H
1
x

0,H2
y

) = q12+s21+r12,

s12 = D1(H
1
x

0,H2
y

0)  D1(H
1
x

0,H2
y

)+D1(H
2
y

,H1
x

)+D1(H
1
x

,H2
y

0) = r12+p21+q12,

r12 = D1(H
1
x

0,H2
y

)  D1(H
1
x

0,H2
y

0)+D1(H
2
y

0,H1
x

)+D1(H
1
x

,H2
y

) = s12+q21+p12.

(4)

Consider also the inequalities for the order-distance D2 obtained by putting • = u = 1, � = t = 2,
and identifying � with :

q11 = D2(H
1
x

,H2
y

0)  D2(H
1
x

,H2
y

)+D2(H
2
y

,H1
x

0)+D2(H
1
x

0,H2
y

0) = p11+r22+s11,

p11 = D2(H
1
x

,H2
y

)  D2(H
1
x

,H2
y

0)+D2(H
2
y

0,H1
x

0)+D2(H
1
x

0,H2
y

) = q11+s22+r11,

s11 = D2(H
1
x

0,H2
y

0)  D2(H
1
x

0,H2
y

)+D2(H
2
y

,H1
x

)+D2(H
1
x

,H2
y

0) = r11+p22+q11,

r11 = D2(H
1
x

0,H2
y

)  D2(H
1
x

0,H2
y

0)+D2(H
2
y

0,H1
x

)+D2(H
1
x

,H2
y

) = s11+q22+p11.

(5)

It was shown that

Each right-hand inequality in (3) is equivalent to the corresponding chain inequality
in (4) for the order-distance D1. Each left-hand inequality in (3) is equivalent to the
corresponding chain inequality in (5) for the order-distance D2.

2.5 Sample-level tests

The set of vectors P for which the system (2) has a solution forms a convex polytope. Recently
Clintin Davis-Stober (J. Math. Psych., 53, 1–13, 2009) developed a statistical theory for testing
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the hypothesis that a vector of probabilities P (not necessarily of the same structure as in LFT)
belongs to a convex polytope P against the hypothesis that it does not. Under certain regularity
constraints he derived the asymptotic distribution (a convex mixture of chi-square distributions)
for the log maximum likelihood ratio statistic

�2 log

max

P2P L (P |N)

max

P

L (P |N)

,

where N is the vector of observed absolute frequencies, comprised of the numbers of occurrences
of (l1, . . . , ln; j1, . . . , jn) in the case of LFT. The likelihoods L (P |N) were computed using the
standard theory of multinomial distributions. Due to this development the statistical aims of this
part of the project were deemphasized.

Other approaches readily suggest themselves. One of them is to use the known theory of
L (P |N) /max

P

L (P |N) to compute a confidence region of possible probability vectors P for a
given empirical vector N . The hypothesis of selective influences is retained or rejected according
as this confidence region contains or does not contain a point P that passes LFT. Resampling
techniques is another obvious approach, e.g., the permutation test in which the assignment of
empirical distributions to different treatments is randomly “reshuffled” so that each distribution
generally ends up assigned to a “wrong” treatment. If the proportion of the permuted assignments
whose deviation from the LFT polytope does not exceed that of the the observed estimate of P is
sufficiently small, the hypothesis of selective influences can be considered supported.

3 Conclusion

Within the framework of this part of the project,

• a general mathematical theory of selective influences was elaborated (which input influences
which of probabilistically interdependent random outputs);

• the Joint Distribution Criterion was formulated in complete generality;

• a theory of pseudo-quasi-metrics was constructed to be used to test for selectiveness of influ-
ences;

• a Linear Feasibility Test for selective influences with finite-valued random outputs was con-
structed;

• a formal equivalence of selective influences with the issue of quantum entanglement in physics
was established, with non-commuting measurements in quantum physics paralleling the mu-
tually exclusive values of inputs (external factors) in behavioral sciences.
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